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Modeling the Impact of One-Way Car 
Sharing: An integrated data- and 

optimization-driven approach 

The main objective of this project was to identify and evaluate alternative approaches for next-generation one-way 

car-sharing systems, and their effect on personal transportation in urban areas. What are the economic viability 

and potential social impacts of different forms of car-sharing systems, and of their operations, in scenarios of 

interest? (e.g.,  American metropolitan region, smaller cities, suburban developments, Asian or South American 

mega-city, but also university campus, industrial complex, etc.)  In particular, in this project we focused primarily on 

New York City, based on publicly-available data, but the methodology will have general applicability. 

We considered two spatial queueing-theoretical models for car-sharing systems that capture salient dynamic and 

stochastic features of customer demand. A spatial queueing model entails an exogenous dynamical process that 

generates “transportation requests” at spatially localized queues. Specifically, the first model, referred to as the 

“distributed” model, transforms the problem of controlling a set of spatially localized queues into one of controlling 

a single “spatially-averaged” queue and al- lows the determination of analytic scaling laws that can be used to 

select important system parameters (e.g., fleet size). The second model, referred to as the “lumped” model, 

exploits the theory of Jackson networks and allows the computation of key performance metrics and the design of 

system-wide coordination algorithms. Using techniques from receding horizon control, combinatorial optimization, 

and integer programming, we design control strategies ensuring the stability of the system. 

In early work we made an initial contribution to ride-sharing by considering a MoD system, in which a shared fleet 

of vehicles, each capable of carrying two passengers at a time, is used to transport passengers. Inherent to the 

formulation are two important attributes: (i) the need to rebalance empty vehicles and (ii) the ability to identify 

lucrative ridesharing corridors by means of trip chaining. Note that although the later functionality is essential to 

capture ridesharing in its most general form, it is absent from the majority of existing works that, for a variety of 

reasons, limit the extent to which rides may be shared. We present a mixed-integer linear programming (MILP) 

formulation of the problem and show how an heuristic (feasible) solution to the problem can be obtained in 

polynomial-time by independently solving the ride-matching and rebalancing problems. This approximate solution 

can be used as a initial guess when solving the coupled problem via a MILP solver. 



 

 

 

 

 

 

 

 

 

 

  

 

 

In the most recent work we considered an approach to uncover ridepooling opportunities in a shared-vehicle, 

mobility-on-demand system. In this setup, a fleet of self-driving vehicles, each capable of serving up to two 

passenger requests at a time, is used to trans- port passengers. In line with existing work, a station based model is 

used to represent the movement of passengers and vehicles in an urban environment. The problem of how to best 

route vehicles, to minimizes either (i) the total system travel time, (ii) total passenger travel time, or (iii) a weighted 

combination of the two, is given as the solution of a integer linear program. The formulation captures the need to 

rebalance vehicles from popular destination stations to popular origin stations. Moreover, it allows trips to be 

chained together, such that a passenger may board a vehicle with one passenger already on board. Theoretical 

results address the stability of such systems in terms of fleet size and characteristics of the travel demand. Finally, 

a simulation of a hypothetical shared mobility system, using real taxi trip data from NYC, demonstrates the 

efficiency gains possible by combining trips using our routing policy. 

A copy of a paper summarizing all the finding of this project, submitted to the 2017 Intelligent Transportation 

Systems Conference is included in this report. 
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Ridepooling with Trip-Chaining in a Shared-Vehicle 
Mobility-on-Demand System 

Samitha Samaranayakea , Kevin Spieser, Harshith Gunthab and Emilio Frazzolic 

Abstract— This work considers an approach to un-

cover ridepooling opportunities in a shared-vehicle, 
mobility-on-demand system. In this setup, a fleet of 
self-driving vehicles, each capable of serving up to 
two passenger requests at a time, is used to trans-

port passengers. In line with existing work, a station 
based model is used to represent the movement of 
passengers and vehicles in an urban environment. 
The problem of how to best route vehicles, to min-

imizes either (i) the total system travel time, (ii) 
total passenger travel time, or (iii) a weighted com-

bination of the two, is given as the solution of a 
integer linear program. The formulation captures the 
need to rebalance vehicles from popular destination 
stations to popular origin stations. Moreover, it allows 
trips to be chained together, such that a passenger 
may board a vehicle with one passenger already on 
board. Theoretical results address the stability of such 
systems in terms of fleet size and characteristics of the 
travel demand. Finally, a simulation of a hypothetical 
shared mobility system, using real taxi trip data from 
NYC, demonstrates the e�ciency gains possible by 
combining trips using our routing policy. 

I. Introduction 

The recent emergence of ride-hailing services (e.g., 
Uber, Lyft, Via etc.) that use a fleet of vehicles to satisfy 
passenger requests on-demand, have made a significant 
impact on the urban transportation eco-system. Using 
a cellphone app, users may request rides, typically from 
their current location to their destination, and service 
is generally punctual. In this way, vehicle sharing pro-
vides a service comparable to owning a private car, 
while removing many of the more burdensome aspects of 
ownership, e.g., searching for a parking space. Moreover, 
by collectively time-sharing use of the fleet, significant 
fixed costs may be distributed over a large user base, 
drastically reducing the cost to access mobility. 

Although ride-hailing services o er a number of bene-
fits, they are plagued by an endemic ine ciency. Namely, 
empty vehicles must be rebalanced to ensure the supply 
of vacant vehicles remains aligned with the demand for 
transport. Compared to the private car ownership model, 
rebalancing has the unfortunate side-e ect of increasing 

aSchool of Civil and Environmental Engineering, Cornell Uni-
versity, samitha@cornell.edu 

bDepartment of Electrical Engineering, Indian Institute of Tech-
nology, Madras 

cDepartment Aeronautics & Astronautics and Laboratory for 
Information and Decision Systems, MIT 

the total vehicle mileage driven throughout the system1 . 
This raises concerns about worsening congestion on city 
streets. Recognizing that many vehicles can carry two 
or more passengers, one way to curb this e ect is to 
incorporate ridepooling into the service, permitting ve-
hicles to transport multiple passengers simultaneously. 
Note that neither the origins nor the destinations of 
passengers collocated in a vehicle need be the same. 
Services such as uberPOOL, Lyft Line, and Via speak 
to, relatively recent, commercial interest in building a 
ride-hailing platform capable of leveraging the e ciency 
gains of ridepooling. 

Despite progress in resolving the core issues of ride-
hailing and carpooling independently, the associated 
results rarely extend to services that fuse ride-hailing 
and carpooling functionality. For example, much of the 
carpooling literature does not apply to ride-hailing sys-
tems because it assumes private vehicle ownership and 
avoids the issue of how to rebalance empty vehicles in 
a fleet setting. At the same time, much of the ride-
hailing work assumes unit capacity vehicles. This work 
considers an autonomous mobility-on-demand (AMoD) 
system, in which a shared fleet of self-driving vehicles, 
each capable of servicing two passenger requests at a 
time2 , is used to transport passengers. Inherent to the 
formulation are two important attributes: (i) the need to 
rebalance empty vehicles and (ii) the ability to identify 
lucrative ridesharing corridors by means of trip chaining. 
Note that although the later functionality is essential to 
capture ridesharing in its most general form, it is absent 
from the majority of existing works that, for a variety of 
reasons, limit the extent to which rides may be shared. 

This remainder of this paper is organized in sections. 
Section II reviews the relevant literature. The notation 
and terminology used describe an AMoD system with 
ridepooling is provided in Section III. Section IV de-
scribes a steady-state model for an AMoD system with 
ridepooling that incorporates both rebalancing and trip-
chaining. The analytical results of the paper are con-
tained in Section V, where the ramifications of rideshar-
ing are discussed in the context of system performance 
and stability. In Section VI, the aforementioned model 

1Not accounting for the additional distance traveled looking for 
parking, which admittedly can be large in certain situations. 

2The ideas presented can be extended to the case of vehicles 
capable of carrying three or four passengers, with the solution 
complexity increasing by a factor of N per increase in occupancy, 
where N is the number of stations in the network. 

mailto:samitha@cornell.edu
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is used to develop routing policies that are optimal with 
respect to (i) average passenger travel time, (ii) average 
vehicle travel time, and (iii) a combination of the two. 
A simulation-based analysis using NYC Taxi data shows 
the tradeo between these objectives and how the model 
compares to (i) single-capacity ride-hailing and (ii) ride-
pooling in the absence of chaining. Finally, Section VII 
recaps the key ideas of the paper and enumerates a 
collection of future work items. 

II. Related Work 

Ridesharing research is unified in its ambition to maxi-
mize e ciency gains at the system-level by servicing mul-
tiple trips with a single vehicle. However, the techniques 
used to do so di er widely based on problem specifics. 
For example, methods are often tailored to reflect (i) 
the timescale on which the transportation demand is 
known, (ii) the passenger capacity of vehicles, and (iii) if 
vehicles are privately owned or belong to a shared fleet. 
A more detailed taxonomy of such systems can be found 
in [1]. Simulations using data from large cities indicate 
significant gains with respect to e ceincy metrics such 
as total vehicle miles driven and system throughput may 
be achieved with ride-pooling [2]. 

The lexicon of ridesharing continues to evolve in both 
academic and everyday usage. For example, when trips 
repeat frequently at known (typically daily) time scales, 
ride-pooling amounts to carpooling. Trip requests that 
are reported in a more haphazard fashion require more 
sophisticated, often automated, methods. Ridesharing is 
termed static when trips are conglomerated assuming a 
fully-known demand model. Note in this context, static 
does not imply time-invariant. Ridesharing is termed 
dynamic when travel demand is revealed in realtime and 
trips are planed in an online manner. 

When private vehicles are used for ridesharing, the 
owner remains in the vehicle whenever it is moving. 
Private vehicle ridesharing schemes for static demand 
models are reported in [3]. In [4], the role of driver or rider 
associated with each demand is determined at runtime 
to minimize total vehicle mileage. Although ridesharing 
with private vehicles imposes restrictions, where vehicles 
end up is of no consequence. In contrast, operating a 
shared fleet requires routing both passenger-filled and 
empty vehicles. The process of realigning the supply of 
empty vehicles with the travel demand in shared vehicle 
systems is termed rebalancing, and is the topic of [5] and 
[6]. There has also been a growing literature studying 
AMoD systems from a queuing-theoretic perspective [7]. 
The core problems in ride-hailing and carpooling have 
historically been distinct [1], yet become highly coupled 
when customer trips are shared using a shared vehicle. 

The remainder of this section highlights relevant con-
tributions to the study of such systems. Software solu-
tions that exploit ridesharing opportunities in a shared 
vehicle system under a dynamic model are discussed 
in [3], [8], and [9]. Demands appear in real time with 

specified windows for pickup and dropo . The challenge 
in doing so lies in deciding which of potentially thousands 
of vehicles are viable candidates to accept an additional 
rider and further refining this list to uphold quality 
of service timing constraints. Because this is a chal-
lenging problem [10], solutions often rely on heuristics 
to make decisions in a timely manner. A door-to-door 
MoD service tacitly assumes passengers do not need to 
switch vehicles. Nevertheless, the impact of customer 
transfers on ridesharing, which is pertinent for multi-
mode problems, is discussed [11]. 

For systems that service no more than two requests at 
a time with a single vehicle, e cient matching algorithms 
can be used to identify “optimal” (under some assump-
tions) trip pairings [2]. However, this approach does not 
allow for the chaining of trips and does not account for 
the rebalancing cost of the matching, components that 
need to be modeled when considering AMoD systems 
with ridesharing. Even under this model, for capacities 
of three or more, the reported matching algorithms are 
non-polynomial in the number of trips. Finally, in very 
recent work, [12], it was shown that an anytime optimal 
algorithm can solve large-scale ridepooling problems in 
real-time, backed by an experimental analysis for NYC. 

In this work, we assume a deterministic steady state 
system where passengers and vehicles are modeled as 
discrete elements. While this problem can also be studied 
using a corresponding (more general) queuing theoretic 
framework, this initial study focuses on the simpler 
deterministic model. The contributions of this article 
are as follows. First, we present a model for solving the 
steady-state ridepooling problem with rebalancing and 
trip-chaining. Second, we provide some analytical bounds 
on the minimum fleet size required for the stability of the 
system, under policies that minimize either the vehicle 
miles traveled or passenger miles traveled. Finally, we 
evaluate the system using real world demand data from 
the NYC Taxi dataset. We compare system performance 
under di erent objective functions and compare our rout-
ing algorithm’s performance against (i) single capacity 
ride-hailing and (ii) ridepooling without trip chaining. 

III. Notation and Terminology 

This section presents the notation and terminology 
used to describe an AMoD system with ridepooling. 
We begin by describing the general functionality of the 
AMoD system. The fixed infrastructure of an AMoD 
system is described by a network G = (V,E) of fully 
connected stations. Here, V = {1,2, . . . ,N} is a set of N 
stations and E µ V 2 is the set of station pairs such that 
(i, j) œ E, ’i ”= j. The time required to travel from station 
i to j is T

ij > 0 and the distance that must be traveled to 
do so is d

ij > 0. For stations i and j that are not directly 
connected in the physical world, ij œ E represents the 
shortest physical path between the stations. 

Passengers enter and exit the system at stations, and 
are transported between stations by a fleet of m self-
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driving vehicles. Each vehicle is able to transport up 
to two passenger requests (potentially more than two 
passengers) at a time. Passengers that enter a vehicle 
may depart the vehicle only upon reaching their desti-
nation. This stipulation prevents passengers from being 
transferred among vehicles while en route, a known de-
terrent 3 to the adoption of transit systems [13] . Vehicles  
traveling while servicing zero, one, or two passenger 
requests are referred to as empty or rebalancing, single-
occupancy, and dual-occupancy vehicles, respectively. 
Single occupancy vehicles may be diverted to pickup 
a second passenger request. We wish to find optimal 
vehicle and passenger flows (for di� erent optimality crite-
ria) by computing the corresponding rebalancing, single-
occupancy, and dual-occupancy flows along each ij  E. 
As mentioned previously,  

œ
a deterministic steady-state 

model is used to analyze the movement of passengers 
and vehicles through G. The variables of interest are 
described below. 

– xk 
i is the rate of empty vehicles traveling from node 

i to node k œ V \ i. The restriction k = i prevents the 
senseless case of a station sending empty vehicles to 
itself. 

– yk 
i is the rate of single-occupancy vehicles trans-

porting a passenger from node i to that passenger’s 
destination node k œ V \ i. 

– jkỹ  is the rate of single occupancy 
i vehicles en route 

from i to j with a passenger destined for k. 
– k,k

Õ 
 z 

i is the rate of dual-occupancy vehicles travel-
ing from node i to node k, for which one of the 
passengers is destined for node k œ V \ i, and the 
other passenger is destined for node kÕ œ V \ i. Note 
that k = kÕ is permitted as it corresponding to the 
case where both passengers are traveling to the same 
destination. 

– ⁄k 
i is the rate of passengers arriving at node i,

destined for node k. The  set
     

{ ⁄k 
 : i, k = i  V  is

referred to as the travel demand
i

  
œ }

q of the system. For q 
convenience,  we write ⁄ k k k

q q i =  
k ⁄i

, ⁄ =
i ⁄i , and 

⁄ =  
i ⁄

k

i =
k ⁄ . 

– d
ij is the distance of link ij œ . The average 

¯  q
E

distance 1 of all requests is d
i,k ⁄

k

od = 
⁄ i

·d
ik

.
Important quantities associated with the AMoD sys-

tem may be expressed in terms of the above variables and 
previously mentioned system parameters. At this time, 
we list two quantities that will feature prominently in 
subsequent sections. The total number of vehicles in the 
system, denoted N

V , is given by 
ÿ ÿ ! ÿ ÿ " 

N = T xk +yk 
V ik 

i i + ˜jk

kk

Õ
y

i . (1) 
i + z

iœV

kœV \i jœV \{i,k} k

ÕœV \i 

Keeping in mind that each vehicle in
 

  the flow k,k

Õ
z  

contains two requests, en
i

 if the total requests tering the 

3This restriction is added to make the system more practically 
applicable and can be easily removed. 

”

”

system in the time period of concern is ⁄̃, the average
¯time a passenger spends in the system, denoted T
S , is,  

1 ÿ ÿ ! ÿ 
jk 

ÿ 
kk

Õ " 
kT̄  

S = T
ik y

i + ỹ
i +2  z

i . (2) 
⁄̃ 

iœV

kœV \i jœV \{i,k} k

ÕœV \i 

Equipped with a common vocabulary, the next sec-
tions consider the relationships and tradeo s that exist 
in a deterministic AMoD system with ridepooling under 
steady-state conditions. 

IV. A Steady-State Model of Ridepooling in 
AMoD Systems 

In reality, the passenger demand in an AMoD system, 
as well as the corresponding passenger and vehicle move-
ments, will vary with time. However, in this work, we first 
focus on understanding ridepooling in an AMoD system 
assuming steady-state conditions. The idea being that 
any insight gained in this context will streamline analysis 
in the dynamic setting4 . 

In steady state, neither passengers nor vehicles accu-
mulate within the system. Consequently, for each node 
i, the rate at which vehicles enter i must equal the rate 
at which vehicles leave i, i.e.,  ’i œ V , 

ÿ ! ÿ " 
i i ik ikx
j +y

j + (z
j + ỹ

j ) = 
jœV \i kœV \jÿ ! ÿ " 

j j jk jkx
i +y

i + (z + ỹ ) . (3) 
i i 

jœV \i kœV \i 

Similarly, for each node i, the passengers entering the 
system, exiting the system, and just passing through 
must be conserved, i.e., ’i œ V, k œ V \ i, we  have  

ik ik⁄k

i +
ÿ

(z
j + ỹ

j ) =  
jœV \i 

ÿ ÿ 1 2 
k jk 

kk

Õ 
k

Õ
k kky

i + ỹ
i + z

i +z
i +2z

i . (4) 
jœV \{i,k} k

ÕœV \{i,k} 

We remark that in any sensible routing strategy, zik is
k 

zero, because there is no reason for a passenger destined 
for and already present at k to go on an excursion to i. 

We also require that the variables x,y,z and conse-
quently the inputs ⁄ are integer valued, since the system 
will otherwise lead to trivial non-physical solutions where 
each capacity two vehicle is cut in half to create two ca-
pacity one vehicles. Finally, as per our earlier restriction, 
we do not want passengers to be transferred between 
vehicles while en route to their destination. Let 

ÿ
Ÿk ik ik 

i = (z
j + ỹ

j ). (5) 
jœV \i 

The following condition enforces this requirement: 
I 

Ÿk 
i + 1

2 (⁄k

i ≠ Ÿk

i ) , if  ⁄
i

k Ø Ÿk 
i

kk 
i Æ , (6) z 

⁄k , otherwise 
i

4We have already extended this work to the dynamic setting and 
obtained preliminary results, which will be provided in an extended 
version of this article. 
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’i œ V, k œ V \ i. If  ⁄
i

k Ø Ÿk

i , then  zkk is maximized when 
i 

as many of the ⁄k demands get paired with the incoming 
i 

passengers heading to k and the remaining ⁄k

i ≠Ÿk share 
i 

rides in pairs. If ⁄k

i < Ÿ
i

k , then at most ⁄k vehicles will 
i 

have two passengers heading to k. Conveniently, (6) may 
be written as the following pair of inequalities: 

kkz Æ ⁄k (7) 
i i 

kk ⁄
i

k 1 
Ÿkz

i Æ + 
i . (8) 2 2 

Because the number of flow variables originating at 
node i, i.e.,  xk

i , yi

k , and zjk, scales as O(N + N + N2),
i 

where |V | = N , the total number of variables in the sys-
tem scales as O(N3). In practice, however, it is unlikely 

jkthat the variables z need to exist for all (i, jk) œ V ◊E.
i 

jkFor example, in NYC, z = 0  for the case where i is
i 

in Midtown Manhattan, j is in the Bronx, and k is in 
Lower Manhattan. Therefore, in practice, the number of 
variables is likely to obey a more favorable scaling, which 
we exploit in our numerical experiments. 

In the steady-state setting, e cient ridepooling 
amounts to finding vehicles flows that satisfy (3)–(6) 
and optimize a sensible performance metric. Identifying 
optimal flows is the subject of Section VI. As an inter-
lude, the next section describes some of the theoretical 
consequences of (3)–(6). 

V. Analysis of Ridepooling in AMoD Systems 

In the case of ride-hailing without pooling, a steady-
state formulation mandates arriving passengers be 
greeted by a car and transported to their destination 
along the fastest route. Routing then assumes the single-
minded objective of minimizing N

V or, equivalently, 
empty vehicle miles traveled [5]. The fundamental extra 
work of rebalancing can also be related to the Earth 
Movers Distance [14], an established quantity that may 
be expressed in terms of origin and destination demands 
(⁄

o

,⁄
d

)5 . 
In ridepooling, establishing a notion of fundamental 

extra work is nebulous because ridepooling permits vehi-
cles to be deflected from the fastest path in favor of longer 
routes that promote sharing and, in turn, smaller fleet 
sizes. Accordingly, we advocate the correct framework 
to understand performance limits in ridepooling systems 

¯is in terms of the (N
V ,TS

)–tradeo curve obtained by 
minimizing the objective –N

V +(1≠–)T̄  
S

, subject to (3), 
(4), and (6), over a spectrum of – in [0,1]. 

¯We reiterate that this tradeo between N
V and T

S 

does not materialize in the case of systems without 
¯ridepooling. Characterizing the (N

V ,TS

)-curve for select 
(⁄

o

,⁄
d

) can be done by solving the corresponding min-
imization problem, and is straightforward. In general, 
however, describing or even bounding the curve, as a 
function of (⁄

o

,⁄
d

), has proven challenging. Given these 

5(⁄
o

, ⁄
d

) are vectors that specify the total demand leaving each 
station and entering each station respectively. 

challenges and the preliminary nature of this work, we 
devote the following section to a numeric study of the 
N

V ≠ T̄  
S curve for a hypothetical ride-sharing system 

based on actual transport data, using both our model and 
prior solutions. The remainder of this section presents a 
handful of ridepooling results that hold irrespective of 
(⁄

o

,⁄
d

). 
Intuitively, AMoD systems with ridepooling require a 

number of cars, N
V , no greater than what would be 

required for a system where pooling is not allowed. To 
explore the extent to which N

V can be reduced via 
ridepooling, we first provide a series of stability results 
relating N

V to properties of the travel demand and the 
desired objective. 

A. Earth Mover’s Distance 

In ride-hailing systems with time-invariant pickup 
and dropo distributions Ï

o and Ï
d

, respectively,  
EMD(Ï

o

,Ï
d

) is a lower bound on the minimum distance 
a vehicle must travel, on average, to transition from 
one job to the next [14]. Formally, given a set X and 
two distributions Ï1 and Ï2, where  Ï

i : X æ RØ0 for 
i = 1,2, and a distance metric D on X, the Earth Mover’s 
Distance, denoted EMD(Ï1,Ï2), is the first Wasserstein 
distance [15]. Mathematically, 

⁄ 
EMD(Ï1,Ï2) =  inf  D(x1,x2)d“(x1,x2), (9) 

“œ�(Ï1,Ï2)
X◊X 

where (Ï1,Ï2) is the set of all measures with marginals 
Ï1 and Ï2 on the first and second factor, respectively. 
Informally, if Ï1 and Ï2 represent two piles of “dirt” (i.e., 
earth), then EMD(Ï1,Ï2) is the minimum work (dirt ◊ 
distance) required to reshape Ï1 into Ï2, or vice versa. 

For conciseness, and compatibility with the standard 
definition of EMD, we provide the results with respect to 
constant vehicle velocities. The results, however, can be 
generalized to variable speeds by defining a correspond-
ing Earth Mover’s Time (EMT) instead of distance. 

B. Performance Limits for a AMoD System with Ride-

pooling 

We will work from the following definition of stability. 
Definition 1: Consider an AMoD system. Let Q

i

(t) 
denote the number of passengers waiting for a vehicle at q
station i at time t and Q(t) =  

iœV Qi

(t). The  system  
is stable if there exists a constant M <  Œ such that 

Q(0) Æ Œ ∆ Q(t) Æ M, t Ø 0. (10) 

In other words, stability requires the number of pas-
sengers waiting at stations be bounded at all times. A 
routing policy, fi, is stable if it results in a stable AMoD 
system. 

Proposition 1: Let fi œ 
N be a stable routing policy 

¯that minimizes N
V , and d

od be the average distance of 
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each request. In the fluid limit of the system, the fleet 
size m(fi) satisfies 

⁄ m(fi) ⁄Æ ! ̄  " Æ . (11) 2v d
od + EMD(⁄

o

,⁄
d

) v 

Proof: Recall the the EMD specifies the minimum 
amount of work that needs to be done when rebalancing 
vehicles for demand and supply distributions (⁄

o

,⁄
d

). In  
the case without ridepooling where each vehicle trans-
ports at most one passenger at time, we have: 

"! ̄
⁄ d

od + EMD(⁄
o

,⁄
d

) Æ mv, (12) 

This is a restatement of the result in [14] that holds 
regardless of the routing strategy used and whether it 
is a fluid limit or the actual discrete system. It corre-
sponds to the case where no ridepooling is performed 
and each vehicle transports at most one passenger at 
time. In the case of an optimal rebalancing strategy [5] 
and the fluid limit, this inequality holds with equality6 . 
Therefore, when an optimal routing strategy is used, "! ̄
(⁄/v) d

od + EMD(⁄
o

,⁄
d

) gives an upper bound on the 
required fleet size for the fluid system. 

At the alternate extreme, the required fleet size is 
minimized when each passenger can always share their 
ride with another passenger without increasing the total 
distance traveled. This occurs either when every request 
can be paired up with another rider that has the same 
origin and destination (either because all the demands 
come in pairs or if passengers can wait for the next 
request with the same origin and destination). In this 
case, the total work required per request is halved. 
The lefthand side of (13) corresponds to this alternate 
extreme and provides a lower bound on the fleet size 
required for system stability. This bound holds regardless 
of whether we consider the fluid limit or the actual 
system. Unsurprisingly, doubling the capacity of vehicles 
halves the lower bound of the necessary fleet size. 

Proposition 2: Let fi œ 
T be a stable routing policy 

that minimizes T
S . In  the  fluid system,  there  exists  a  

fi œ 
S such that the fleet size m(fi) satisfies 

⁄ m(fi) ⁄Æ ! ̄  " Æ . (13) 2v d
od + EMD(⁄

o

,⁄
d

) v 
Proof: The solution above in which each passenger 

is transported individually gives us on the upper bound 
¯ on the fleet size, since T
S is clearly minimized in this 

case. The lower bound is achieved when each passenger 
shares their ride with another passenger without having 
to deviate from the shortest path. Thus, the lower bound 
also remains the same. Furthermore, if any waiting time 
at the origin (prior to pickup) is ignored, one can trivially 
achieve the lower bound for fleet size by simply waiting 
and the origin until another demand with the same 
destination arrives. As long as this time is bounded, the 
system will still be stable. 

6This simply requires solving a min cost bi-partite matching 
problem. 

Unfortunately, bounding these quantities in the actual 
system without a fluid approximation is challenging, 
making it hard to quantify the tradeo between N

V and 
T̄

S in real-world systems. Therefore, we evaluate this 
tradeo experimentally in the next section. 

VI. Simulations results 

In this section, we show how the proposed ridepooling 
policies perform in di erent scenarios. We first compare 
this system against a single capacity ride-hailing sys-
tem [16] and a system based on the matching algorithm 
presented in [2]. Then we experimentally explore the 
tradeo between fleet size and the average travel time. 
Our experimental results are based on a hypothetical 
AMoD installation in NYC using real demands obtained 
from NYC Taxi data. We first discuss our dataset and 
outline the experimental methodology, before describing 
the simulation results. 

The demand model was populated using data from the 
open source NYC taxi data for 2013 [17]. The dataset 
contains trip level data with attributes such as origin 
location, destination location, pickup time and travel 
duration. After limiting the boundaries of the origin and 
destination to remain within lower Manhattan Island, the 
total number of trips made in the selected day (March 
11, Monday) was nearly 39,306. Collectively, we assume 
that this demand is representative of an initial user base 
for the hypothetical ridepooling system. 

To make this data compatible with the proposed 
model, origin and destination locations of all demands 
were clustered using a k-means algorithm and mapped 
to 40 stations [16]. To measure the model’s performance 
through a day’s data, the demands of the day were 
aggregated into 24 buckets corresponding to their hour 
of origin. Once aggregated, to make the demands more 
realistic and challenging for the model, the time win-
dow was compressed from 1 hour to 5 minutes (⁄k = ' ( i 
⁄k

i (hour)/12 ). Thus, we obtain a steady state demand 
distribution with a 5 minute time step. The simulation 
assumes vehicles travel at a constant speed of 30km/h 
and move directly between stations. Upon mapping ori-
gin and destination points to the nearest station, and 
discarding trips that start and end the same node, we 
were left with 36,915 trips. 

The proposed model results in an MILP that was 
implemented in Python and solved using the Gurobi 
Optimizer. The objectives of interest are to (1) minimize 
total fleet size (N

V ), (2) minimize average customer 
travel time (T̄  

S ), and (3) a convex combination of these 
objectives. The constraints are given by equations (3) 
– (6). Since the problem is an MILP, convergence is not 
always absolute. The largest MIP gap (di erence between 
lower and upper bounds in the solver) in our simulations 
is 6.22% with a maximum solver runtime of 10 minutes. 

The first set of experiments were run with the objec-
tive of minimizing fleet size (N

V ) for all hours of the 
selected day. We demonstrate the performance of the 

https://o,/d).In


Fig. 1: Experimental results comparing three ridesharing models, 1) optimal rebalancing without ridepooling, (i.e., 
rb (no pooling)), 2) optimal ride matching with decoupled optimal rebalancing (i.e., 2-matching + rb), and 3) the 
new coupled optimization model (i.e., coupled optimization), with New York City taxi data over a 24 hour period. 

– |V| X Y Z VMT X% AVO ATT – |V| X Y Z VMT X% AVO ATT 

0* 1902 271 0 1631 17730 14.25 1.71 17.02 
0 1921 202 143 1575 17904 10.53 1.71 12.98 
0.1 1919 205 141 1574 17888 10.69 1.71 12.95 
0.2 1919 200 157 1562 17891 10.40 1.71 12.93 
0.3 1920 202 155 1563 17891 10.53 1.71 12.92 
0.4 1918 192 178 1547 17875 10.03 1.70 12.90 
0.5 1954 214 219 1521 18217 10.96 1.67 12.85 
0.6 1945 211 205 1528 18125 10.86 1.67 12.85 
0.7 1961 206 249 1506 18280 10.51 1.66 12.85 
0.8 1945 201 226 1518 18129 10.34 1.67 12.85 
0.9 1964 212 244 1508 18310 10.78 1.66 12.85 
1 3805 542 3262 0 35461 14.25 0.85 12.85 

0* 2197 29 0 2168 20476 1.30 1.97 16.06 
0 2217 9 48 2160 20660 0.40 1.97 12.59 
0.1 2215 5 56 2154 20642 0.21 1.97 12.58 
0.2 2217 6 67 2143 20660 0.29 1.96 12.55 
0.3 2219 7 66 2146 20683 0.31 1.96 12.56 
0.4 2245 8 139 2098 20921 0.34 1.93 12.49 
0.5 2253 8 156 2089 20998 0.34 1.92 12.49 
0.6 2265 8 181 2077 21113 0.33 1.91 12.49 
0.7 2256 11 154 2090 21023 0.50 1.92 12.49 
0.8 2287 11 217 2058 21315 0.50 1.89 12.49 
0.9 2285 10 216 2059 21299 0.44 1.90 12.49 
1 4394 57 4337 0 40952 1.30 0.98 12.50* 

(a) Hour 6 (b) Hour 13 

TABLE I: Tradeo� analysis between minimizing the total Vehicle Miles Traveled (VMT) and Average Passenger Travel Time 
(ATT) in minutes for two representative hours of the day. The objective function is Z = (1≠ –)Z

V MT  +–Z
AT T . The column 

descriptions are as follows: |V | is the fleet size, X is the #empty (or rebalancing) trips, Y is the #single occupancy trips, Z 
is the #dual occupancy trips, X% is the percentage of empty trips over all trips, and AVO is the average vehicle occupancy. 
The – = 1  case for hour 13 is slightly larger than – = 0.9 due to rounding errors. 

model by comparing it with two alternate models. The 
first model assigns each request to a dedicated vehicle 
(no ridepooling) and minimizes the total empty vehicle 
(or rebalancing) miles as described in [5] and [16]. The 
second model, based on [2], solves an optimal matching 
problem to allocate requests to vehicles with a limit of 
two (as in our model). This algorithm, however, does 
not consider rebalancing the vehicle fleet and does not 
have the capability of trip chaining. The address the 
rebalancing issue, which is necessary for system stability, 
we use a sequential optimization approach where the 
optimal rebalancing is performance after the matching 
is done. The two stages of this approach in more detail 

the new trip set using the algorithm given in [16]. In 
contrast, our model is able to integrate the rebalancing 
problem with the matching problem and solve a coupled 
optimization problem. It should be noted, however, the 
the approach in [2] does not require a station based model 
and is more general in that sense7 . 

Figure 1 shows the results obtained from comparing 
our model with the two models described above over 
a 24 hour period. As expected, the minimum required 
fleet size is proportional to the total demand in all three 
models with our coupled optimization approach requiring 
the smallest fleet size. The temporal variation of the fleet 

are: 1. perform a maximum matching of the aggregated 7For a comparison with respect to non-station based fleet man-
demands and pair them accordingly, and 2. rebalance agement we refer the reader to [12]. 
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size is also minimized in our approach with the maximum 
required fleet size being almost half of the requirement 
with the decoupled 2-pooling approach. Note that the 
minimum required fleet size and total vehicle miles trav-
eled are proportional to each other in the steady state 
models. The higher average vehicle occupancy in our 
model, made possible by the additional sharing due to 
trip chaining, leads to the smaller fleet requirement. By 
exploiting these trip chaining opportunities, our model 
is also able to significantly reduce the total number of 
empty vehicle (or rebalancing) miles in the system, which 
are non-revenue-generating. Somewhat surprisingly, for 
the case of this particular data set, the average travel in 
our approaches is almost as good as with no ridepooling. 
While theoretically, one would need to tradeo between 
VMT and passenger travel time, the trip chaining in our 
method is able to very e ectively exploit the overlapping 
nature of the trips in this dataset. 

The second set of experimental results correspond to 
a tradeo analysis between two competing objectives 
of interest: (1) total Vehicle Miles Traveled (or total 
fleet size) Z

V MT  and (2) Average Passenger Travel Time 
Z

AT T . We consider a spectrum of objectives that span 
the linear combinations of these two objectives with a 
parameter – œ [0,1], where  Z = (1 ≠ –)Z

V MT  + –Z
AT T . 

The corresponding results for two hours of the day (hours 
6 and 13) are presented in Table 1. The extra data point 
labeled with – = 0ú is a special case of interest when all 
demands are forced to travel as coupled demands (i.e. as 
zkk flows) by forcing each customer to wait at the source 

i 
until a perfect match is found. As seen in Table 1, this 
leads to a significantly longer ATT, but does not reduce 
VMT by any significant amount compared to when – = 0. 
The fleet size and VMT is minimized when – = 0, but  
grows very slowly as – increases. Correspondingly the 
ATT also decreasing at a slow rate. In this case, the 
trip chaining algorithm is able to find e cient routes for 
demand and keep travel time increase at a minimum. For 
this dataset, with a fairly uniformly distributed demand, 
the sweet spot appears to be when – is at 0.9. We  expect  
this point to be di erent across di erent datasets. 

While not a viable framework for operating a real-
time Mobility-on-Demand (MoD) system with ridepool-
ing, the proposed model can be used as a fast and 
simple methodology for evaluating the potential for such 
systems. It can be used as a tool by both fleet operators 
and public agencies to evaluate the benefits of the simple 
case of capacity two ridepooling. 

VII. Conclusions and Future Directions 

This paper presented a steady state analysis for ride-
pooling with trip chaining in a Mobility-on-Demand 
(MoD) system. A new model that captures both the 
e ects of trip chaining and vehicle rebalancing was de-
veloped and used to discover more e cient ridepooling 
solutions. We show how the minimum fleet size for 
system stability, in the case of the fluid approximation 

of the system, can be bounded using the Earth Mover’s 
Distance, both in the case of minimizing (i) fleet size 
and (ii) on-trip delay. The system imposes a fundamental 
tradeo between minimizing the total vehicle miles trav-
eled and minimizing the total passenger miles traveled. 
While an analytical expression for this tradeo proved 
elusive, a detailed experimental analysis for Manhattan, 
based on real travel data from NYC taxis, was presented. 
The results show that our solution is more e cient than 
previously reported schemes and able to decrease vehicle 
miles traveled with very little impact on the average 
travel time. Our current work is limited to the case of a 
deterministic steady state system, but we are expanding 
this work to a) study the deterministic dynamic system 
and b) the stochastic steady state system. 
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